CANopen

CANopen Interface for SG5

User Manual

This document applies to the following controllers:
E12x0-xx-xx
(with CANopen Interface SW installed)

CANopen Interface Manual LinMot®

a
=)
c
©
=
()]
(8)
“ﬂ_i
S
()
)
=
c
Q
Q
g
(&)

© 2010 NTIAG

This work is protected by copyright.

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, microfilm, storing in an information retrieval system, not even for didactical use, or translating, in whole or in
part, without the prior written consent of NTI AG.

LinMot® is a registered trademark of NTI AG.

The information in this documentation reflects the stage of development at the time of press and is therefore without obligation.
NTI AG reserves itself the right to make changes at any time and without notice to reflect further technical advance or product
improvement.

Document version 1.1 / mk, June 2010

NTI AG / LinMot® www.LinMot.com Page 2/57

CANopen Interface Manual LinMot®

Table of Contents

1 SYSEEM OVEIVIEW......ccciiieinrr s n s aaas 4
2 Connecting the CAN DUS........ccccciiiiii s sssssssssssssssssssnnsnnnnns 4
2.1 Pin assignment of the CMD Connector (X7, X8).........uuueiiiiiiiiiiiiiiieeeee e 4
2.2 CAN TermMINALION. ...ceiiiiie ettt e e e e e e e e et e e e e e e e e e e snnnneeennnnes 5
2.2.1 Activating the termination reSistor. ... 5

3 CANOPEN Parameters.........coieieeeeeeiiiiieiirireeesssssssss s s s s snssssssssssssessnsnnssssssssssersnnsssssennssssnnns 6
4 CANopen Variables..........ciiiiiiiiissssss s s s 19
5 Mapping of the PDOS.........ccoiiiiiiiicieeseesss st s s s s s s s s s s s s s s s e s s e e e s s e e s e e s e e e s asensnnnns 20
T I 7= = U] 1V =T o] o1 o 20
5.1.1 Default Mapping of the Receive PDOS............ouviiiiiiiiiiiiiiiiiiicee e 20
5.1.2 Default Mapping of the Transmit PDOS...........ooooiiiiiiiii 21
5.1.3 Default [dentifier...... ..o 22

5.2 Using the Motion Command Interface in asynchronous transmission modes......... 22

LS00 o T T=T o2 0 1T o - T RPN 23
6.1 Communication Profile Area (1000h - 1FFFR).......ooooiie 23
6.2 Manufacturer specific Profile Area (2000h — 5FFFh)............ooiiiii 31
6.2.1 UPID COMMANGAS.....oiiiiiiiiiiiiieieeeeeee ettt e e e e e e eeenees 31
6.2.2 System COMMEANGS.........uuuuieiiiiiiiiiiiiiiiire e e aeeeennna s 36
6.2.3 Curve Service COMMANGS.o e e e e e e e e e eeeeennnns 38
6.2.4 Error LOg COMMEANGS.........uuuuuiiiiiiiiiiiiiiiiii e e e e e e e ennaan s 43
6.2.5 Command Table CommandsS..............uuuuuiiiiiiiiiiiiiiiieeeeeee e 45

A = €= 1101 o L= P 50
7.1 Homing and motion COMME@ANGS...........uuiiiiiiiiiiiiiiee e 50

8 Reset Parameters to default values..........cccciiiiiiimnnrr 52
9 Configuration of the E1200 with an EDS File.........coovviiiimmmiiceeeeeees e 53
9.1 Configuring a PDO variable by UPID with the EDSfile...........cccooeiiiiiiiiiin. 53
9.1.1 Setting the UPIDs of the parameter to map to a PDO...........ooeiiiiiiiiiiiinn. 53
9.1.2 Getting UPID PDO data into PLC variablesccccccovvvviiiiiiiiiiiiiiiiieeeee 53

S B G B =T] o) [54

10 Interface Error Codes........ooommiiiiiiiieisirrs s ssssssr s s ssssss s s s s s s s s mm s s s nnssses 55
11 Contact AdAreSSEeS......ccoiiiiiiiiiiiiiiii e n e e e e ees 57

NTI AG / LinMot® www.LinMot.com Page 3/57

©
=)
c
©
=
()]
(8)
u“-,
.
()
)
kS
c
Q
Q
g
(&)

CANopen Interface Manual LinMot®

The LinMot E1200 series of servo controllers comply with the following specifications:

— CiA 102 DS V2.0 CAN physical layer for industrial applications

— CiA 301 DS V4.0.2 — CANopen application layer and communication profile

— CiA 303-3 DR V1.3: CANopen additional specification — Part 3: Indicator
specification

— CIiA 306 DS V1.3: Electronic data sheet specification for CANopen

Further information on specifications can be found under: http://www.can-cia.org/

The following resources are available:
- 4 TxPDO
- 4 RxPDO
- 1 TxSDO
- 1 RxSDO

The supported protocols include:
- NMT Error Control (Node Guarding Protocol or Heartbeat Protocol)
- PDO (Transmission type 254, 250 and 1)
- SDO Upload and Download
- NMT (Start, Stop, Enter PreOp, Reset Node, Reset Communication)
- Boot-Up Message

An EDS (Electronic Data Sheet) file is provided for convenient configuration of all
CANopen functions of the servo controller via a PLC.

2 Connecting the CAN bus

The CANopen bus can be connected either via X7 or X8.

2.1 Pin assignment of the CMD Connector (X7, X8

2 x RJ45 with 1:1 connected signals. Standard twisted pairs: 1/2, 3/6, 4/5, 7/8.
Use Ethernet cables according the EIA / TIA 568A standard.

Pin 1 RS485 A
Pin 2 RS485 B
Pin 3 RS485Y
Pin 4/5 Ground
Pin 6 RS485 Z
Pin 7 CANH
Pin 8 CAN L

NTI AG / LinMot® www.LinMot.com Page 4/57

a
=)
c
©
=
()]
(8)
“ﬂ_!
S
()
)
=
c
Q
Q
%
(&)

http://www.can-cia.de/

LinMot®
2.2 CAN Termination

The CAN-bus must be terminated by two 120 Ohm resistors at both ends of the bus line,
according to the following figure:

node 1| noden
CAN_H
CAN Bus Line @
CAN_L

For easy installation, the LinMot CANopen controller has built-in termination resistors,
which can be activated, if the LinMot controller is at the end of the bus line, and if there is
no termination in the connector.

2.2.1 Activating the termination resistor

Switch 1: AnIn2 pull-down (4k7 Pulldown on X4.4). Set to ON, if X4.4 is used as digital output
Switch 2: Termination resistor for RS485 on CMD (120R between pin 1 and 2 on X7/X8) on/off
Switch 3: CAN termination on CMD (120R between pin 7 and 8 on X7/X8) on/off

Switch 4: CAN termination on ME (120R between pin 7 and 8 on X10/X11) on/off

(Factory setting: all switches “off”)

To activate the built-in termination resistors, switch 3 of S5 has to be set to ON.

NTI AG / LinMot® www.LinMot.com Page 5/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

LinMot®
3 CANopen Parameters

The CANopen servo controllers have an additional parameter tree branch, which can be
configured with the distributed LinMot-Talk software. With these parameters, the CANopen
behaviour can be defined.

The LinMot-Talk1100 software can be downloaded from http://www.linmot.com.

It is also possible to configure the servo controller via a PLC by writing to the appropriate
CANopen dictionary entries. This has to be done when the servo controller is in the pre-
operational state.

in the parameter section of the LinMot-Talk software. The values sent via
the PLC will take precedence over the configuration seen in the
LinMot-Talk software!

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

f If the PLC reconfigures the servo controller, the changes are not reflected

Dis-/Enable \With the Dis-/Enable parameter the LinMot servo controller can be run
without the CANopen interface going online. So in a first step the
system can be configured and run without any bus connection.

CANopen Interface\ Dis-/Enable

Disable Servo controller does not take part in the
CANopen communication.

Enable Servo controller takes part in the CANopen
communication.

NTI AG / LinMot® www.LinMot.com Page 6/57

http://www.linmot.com/

CANopen Interface Manual LinMot®

Baud Rate
In this section the parameters for the baud rate selection are located.

Baud Rate Source Select
Defines the source of the baud rate definition.

CANopen Interface\ Baud Rate \Baud Rate Source Select g
S

By Hex Switch CAN bus baud rate dependent on S1: =
S1 S
0=ByBTR £

1 = 125 kBit/s 2

2 = 250 kBit/s =

3 = 500 kBit/s S

4 =1 Mbit/s g

(&)

By Parameter The CAN bus baud rate is selected by the
“‘Baudrate Parameter”:

- 125 kBit/s [1]
- 250 KBit/s [2]
- 500 kBit/s [3]
-1 Mbit/s [4]

By BTR CAN bus baud rate is defined according to
the Bit Timing Register

Baud Rate Parameter Definition
The baud rate parameter defines the CAN bus baud rate for the CANopen
connection.

CANopen Interface\ Baud Rate\ Baud Rate Parameter

Definition

125 kBit/s CAN bus baud rate = 125 kBit/s
250 kBit/s CAN bus baud rate = 250 kBit/s
500 kBit/s CAN bus baud rate = 500 kBit/s
1 Mbit/s CAN bus baud rate = 1 Mbit/s

Advanced Bit Timing Setting

For special applications where no standard setting for the baud rate works, this
parameter defines the bit timing for the CAN bus. The setting of the baud rate by
Bit Timing Register is only necessary on special bus configurations: For example,
if there are devices on the bus that have slow optocouplers.

NTI AG / LinMot® www.LinMot.com Page 7/57

CANopen Interface Manual LinMot®

Node-ID
In this section the Node-ID can be configured.

Node-ID Source Select
This parameter defines from which source the Node-ID is taken.

CANopen Interface\ Node-ID\ Node-ID Source Select g
@

By Hex Switch The Node-ID is determined by the hex switch =
S2 S2. S
S

1 59

By Hex Switches | The Node-ID is determined by the two hex 9
S1and S2 switches S1 and S2. =
c

By Parameter The Node-ID is determined via an additional §
parameter. E

(&)

Node-ID Parameter Value
Used Node-ID, when “By Parameter” is selected as source.
The default value is 63 (3Fh).

NTI AG / LinMot® www.LinMot.com Page 8/57

CANopen Interface Manual LinMot®

PDO Configuration

TxPDO 1..4 Enable
Selector for enabling/disabling the transmit PDO 1..4.

CANopen Interface\ PDO Configuration\ TxPDO 1..4\ TxPDO

1..4 Enable
Disable The PDO is deactivated
Enable The PDO is activated

Transmission Type

This defines the transmission type according to DS 301. The default value is 1
(cyclic synchronous). Type 254 (Asynchronous with inhibit time) is supported as
well.

The transmission type 250 is LinMot specific (it is reserved according to DS 301).

If the transmission type 250 is selected, the transmit PDO is sent immediately after
reception of the corresponding receive PDO (TxPDO 1 corresponds to RxPDO 1
and so on). It can be used to realize a simple Poll-Request / Poll-Response type
bus structure.

a
=)
c
©
=
()]
(8)
“ﬂ_!
S
()
)
=
c
Q
Q
%
(&)

Inhibit Time [us]
Defines the minimal time between two send events in multiples of 100us.

Event Time [ms]

Defines the maximal time between two send events in ms.

RxPDO 1..4 Enable
Selector for enabling/disabling the receive PDO 1..4.

CANopen Interface\ PDO Configuration\ RxPDO 1..4\RxPDO

1..4 Enable
Disable The PDO is deactivated
Enable The PDO is activated

Transmission Type

This defines the transmission type according to DS 301. The default value is 1

(cyclic synchronous). Type 254 (Asynchronous with inhibit Time) is supported as
well.

The transmission type 250 is LinMot specific (its reserved according to DS 301). If
the transmission type 250 is selected, the transmit PDO is sent immediately after

reception of the corresponding teceive PDO (TxPDO 1 corresponds to RxPDO 1

and so on). It can be used to realize a simple Poll-Request / Poll-Response

type bus structure.

NTI AG / LinMot® www.LinMot.com Page 9/57

CANopen Interface Manual LinMot®

PDO Mapping

TxPDO 1
These parameters define the mapping of the transmit PDO 1.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ TxPDO 1 g

©

Status Word [16Bit] If this Boolean parameter is set, the =

status word is transmitted with TxPDO 1. §

[*A4

State Var [16Bit] If this Boolean parameter is set, the state §

var (high byte = state / low byte = sub =

state) is transmitted with TxPDO 1. S

Q

Actual Position If this Boolean parameter is set, the 32- %

[32Bit] bit actual position is transmitted with)
TxPDO 1.

By UPID [8-32Bit] This parameter can be used for free
mapping of any parameter or variable to
TxPDO 1 (mapping through Unique
Parameter ID = UPID, 0 = no mapping).
The corresponding data size in TxPDO 1
is derived from the mapped UPID.

For Boolean values one byte is used in
the PDO with the lowest bit being the
value of the Boolean.

NTI AG / LinMot® www.LinMot.com Page 10/57

CANopen Interface Manual LinMot®

TxPDO 2
These parameters define the mapping of the transmit PDO 2.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ TxPDO 2

Demand Position [32Bit] | If this Boolean parameter is set, the
32-bit demand position is transmitted
with TxPDO 2.

Demand Current [32Bit] | If this Boolean parameter is set, the
32-bit demand current value (= motor
current) is transmitted with TxPDO 2.

By UPID [8-32Bit] This parameter can be used for free
mapping of any parameter or variable
to TxPDO 2 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in TxPDO 2 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

NTI AG / LinMot® www.LinMot.com Page 11/57

CANopen Interface Manual LinMot®

TxPDO 3
These parameters define the mapping of the transmit PDO 3.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ TxPDO 3

Warn Word [16Bit] If this Boolean parameter is set, the §
warn word (= bit coded warnings) is s
transmitted with TxPDO 1. =

@

Logged Error Code If this Boolean parameter is set, the §

[16Bit] logged error code is transmitted with §
TxPDO 1. =

c

Motion Cmd Status Feedback of the motion command g

[16Bit] header (toggle, etc..) g

By UPID [8-32Bit] This parameter can be used for free o

mapping of any parameter or variable
to TxPDO 3 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in TxPDO 3 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

TxPDO 4
These parameters define the mapping of the transmit PDO 4.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ TxPDO 4

By UPID [8-32Bit] This parameter can be used for free
mapping of any parameter or variable
to TxPDO 4 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in TXxPDO 4 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

NTI AG / LinMot® www.LinMot.com Page 12/57

CANopen Interface Manual LinMot®

RxPDO 1
These parameters define the mapping of the receive PDO 1.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ RxPDO 1

Control Word [16Bit] If this Boolean parameter is set, the B
control word has to be transmitted with s

RxPDO 1. =

[}

Motion Cmd Header Motion command interface header. §
[16BiIt] §
=

Motion Cmd Par Byte The first 4 bytes of the command -
0..3 [32Bit] parameters of the motion command 8
interface. g

By UPID [8-32Bit] This parameter can be used for free o

mapping of any parameter or variable
to RxPDO 1 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in RxPDO 1 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

NTI AG / LinMot® www.LinMot.com Page 13/57

CANopen Interface Manual LinMot®

RxPDO 2
These parameters define the mapping of the receive PDO 2.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ RxPDO 2

Motion Cmd Slave To ensure data consistency with B
Header [16Bit] asynchronous communication modes, s
the slave headers have to be used =

when spreading motion commands o]

across several PDOs. ..g

[}

Motion Cmd Par Byte The second 4 bytes of the command £
4..7 [32Bit] parameters of the motion command S
interface. Q

2

(&)

Motion Cmd Par Byte The first half of the third 4 bytes of the
8..9 [16Bit] command parameters of the motion
command interface.

Motion Cmd Par Byte The third 4 bytes of the command

8..11 [32Bit] parameters of the motion command
interface.
By UPID [8-32Bit] This parameter can be used for free

mapping of any parameter or variable
to RxPDO 2 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in RxPDO 2 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

NTI AG / LinMot® www.LinMot.com Page 14/57

CANopen Interface Manual LinMot®

RxPDO 3
These parameters define the mapping of the receive PDO 3.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ RxPDO 3

Motion Cmd Slave To ensure data consistency with B
Header [16Bit] asynchronous communication modes, s
the slave headers have to be used =

when spreading motion commands o]

across several PDOs. £

7]

Motion Cmd Par Byte The fourth 4 bytes of the command £
10..13 [32Bit] parameters of the Motion Command S
Interface. o

2

(&)

Motion Cmd Par Byte The second half of the fourth 4 bytes
14..15 [16BIt] of the command parameters of the
Motion Command Interface.

Motion Cmd Par Byte The fifth 4 bytes of the command
12..15 [32Bit] parameters of the Motion Command
Interface.

Motion Cmd Par Byte The sixth 4 bytes of the command

16..19 [32Bit] parameters of the Motion Command
Interface.
By UPID [8-32Bit] This parameter can be used for free

mapping of any parameter or variable
to RxPDO 3 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in RxPDO 3 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

NTI AG / LinMot® www.LinMot.com Page 15/57

CANopen Interface Manual LinMot®

RxPDO 4
These parameters define the mapping of the receive PDO 4.
Eight bytes can be mapped in total.

CANopen Interface\ PDO Mapping\ RxPDO 4

Motion Cmd Slave To ensure data consistency with B
Header [16Bit] asynchronous communication modes, s
the slave headers have to be used =

when spreading motion commands o]

across several PDOs. ..g

[}

Motion Cmd Par Byte The sixth 4 bytes of the command £
16..19 [32Bit] parameters of the motion command S
interface. o

o

By UPID [8-32Bit] This parameter can be used for free g

mapping of any parameter or variable
to RxPDO 4 (mapping through Unique
Parameter ID = UPID, 0 = no
mapping). The corresponding data
size in RxPDO 4 is derived from the
mapped UPID.

For Boolean values one byte is used
in the PDO with the lowest bit being
the value of the Boolean.

NTI AG / LinMot® www.LinMot.com Page 16/57

CANopen Interface Manual LinMot®

NMT Error Control

The heartbeat mechanism takes precedence over the node guarding protocol.

If object 1017h of the object dictionary (Producer Heartbeat Time) is different
from zero, the heartbeat protocol is used.

If this entry is zero and the guard time multiplied with the life time factor is not zero,
the node guarding protocol is used instead.

If all of these values are zero, no error control mechanism will be active.

The E1200 is also capable of consuming a heartbeat. If object 1016h sub 1 of the
object dictionary (Consumer Heartbeat Time 1) is different from zero, a heartbeat is
consumed with the node-ID and time (given in ms) taken from this entry.

Node Guarding Protocol
Directory for configuring the node guarding protocol.

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

CANopen Interface\ NMT Error Control\ Node Guarding
Protocol

Guard Time The guard time in ms, when the node guarding
mechanism is active.

Life Time Multiplier used with the Guard Time.
Factor

The total time that has to pass for a node to trigger a failure is called the
node life time. The node life time is the guard time multiplied by the life time
factor. Node Guarding starts with the reception of the first guarding message.

Heartbeat Protocol
These parameters configure the heartbeat protocol.

CANopen Interface\ NMT Error Control\ Heartbeat Protocol

Producer Time | Cycle time for producing a heartbeat in ms.
Consumer Time for the consumed heartbeat in ms.
Time

Consumed Node-ID of the master, who's heartbeat is
Node-ID monitored.

(Master)

NTI AG / LinMot® www.LinMot.com Page 17/57

CANopen Interface Manual LinMot®

Legacy Sync Watchdog

These parameters configure the legacy watchdog of the sync telegram. This can be
used together with heartbeat or node guarding.

This feature is not part of the DS 301 specifications and is LinMot specific.

The time between the arrival of two sync telegrams is measured. If the measured

time exceeds 1.5 * LSW monitored cycle time an error is generated. §
The Legacy Sync Watchdog is only active while the NMT-State of the controller s
is operational. Monitoring via the LSW starts automatically on the transition from =
Pre-Operational to Operational state. §
[*A4
Watchdog Enable §
Enabling/Disabling the legacy sync watchdog feature. 1=
c
@
o
CANopen Interface\ NMT Error Control\ Legacy Sync o
Watchdog\ LSW Enable ?,
Disable The sync watchdog is deactivated.
Enable The sync watchdog is activated.

LSW monitored Cycle Time
The real expected sync cycle time can be configured here.

NTI AG / LinMot® www.LinMot.com Page 18/57

LinMot®
4 CANopen Variables

CANopen
These variables show information about the status of the CANopen communication: §
S
CANopen %
3]
NMT State Shows the NMT state of the controllers. ..g
(INITIALISING, STOPPED, 9
PREOPERATIONAL, OPERATIONAL) =
c
Node-ID Active node-ID of the controller. §
Baud Rate Active baud rate of the controller. g
Active Error Shows if a guarding protocol is active.
Control Protocol (None, Heartbeat Protocol, Node Guarding
Protocol)
SyncCycle Time in [us] between the reception of two

SYNC messages.

CAN Bit Timing Value of the CAN Bit Timing Register.

CANopen: Object Dictionary

All supported object dictionary entries can be read here.

NTI AG / LinMot® www.LinMot.com Page 19/57

CANopen Interface Manual LinMot®

5 Mapping of the PDOs

5.1 Default Mapping

RxPDO 2

Motion Cmd Par Byte 04..07

Length

[32Bit]

Motion Cmd Par Byte 08..11
RxPDO 3

Motion Cmd Par Byte 12..15

[32Bit]

Length

[32Bit]

Motion Cmd Par Byte 16..19
RxPDO 4

A maximum of 4 parameters
with a total maximum length
of 64 Bit can be mapped by
UPID

[32Bit]

Length

[64Bit]

NTI AG / LinMot®

www.LinMot.com

©

The PDOs are mapped by default according to the following scheme: 2
©

5.1.1 Default Mapping of the Receive PDOs %
£

1 59

Control Word [16Bit] S

Qo

Motion Cmd Header [16Bit] g

Motion Cmd Par Byte 00..03 | [32Bit] &)

Page 20/57

CANopen Interface Manual LinMot®

5.1.2 Default Mapping of the Transmit PDOs

TxPDO 1 Length
Status Word [16Bit]
State Var [16Bit]
Actual Position [32Bit]
Demand Position [32Bit]
Demand Current [32Bit]
Warn Word [16BiIt]
Logged Error Code [16Bit]
A maximum of 4 parameters with [32Bit]

a total maximum length of 32 Bit
can be mapped by UPID

TxPDO 4 Length

A maximum of 4 parameters with [64Bit]
a total maximum length of 64 Bit
can be mapped by UPID

If the application requires it, the mapping can be completely changed by the PDO Mapping
parameter settings. Many applications do not require to use all resources.

NTI AG / LinMot® www.LinMot.com Page 21/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

LinMot®
5.1.3 Default Identifier

The default identifiers (11 bit identifier) are allocated by the following scheme:

Function Code Node ID

This results in the following table:

Object Function Code COBID COB ID Object for Comm.
(binary) (hex) (dec) Parameter / Mapping

NMT 0000b 00h 0 -

SYNC 0001b 80h 128 1005h / 1006h / 1007h

Emergency 0001b 81h — FFh 129-255 1014h

TxPDO 1 0011b 181h — 1FFh | 385-511 1800h / 1A00h

TxPDO 2 0101b 281h — 2FFh | 513-639 1801h / 1A01h

TxPDO 3 0111b 381h — 3FFh | 641-767 1802h / 1A02h

TxPDO 4 1001b 481h — 4FFh | 769-895 1803h / 1A03h

RxPDO 1 0100b 201h —27Fh | 897-1023 1400h / 1600h

RxPDO 2 0110b 301h —37Fh | 1025-1151 | 1401h/1601h

RxPDO 3 1000b 401h —47Fh | 1153-1279 | 1402h/ 1602h

RxPDO 4 1010b 501h — 57Fh | 1281-1407 | 1403h/1603h

TxSDO 1011b 581h — 5FFh | 1409-1535 | -

RxSDO 1100b 601h —67Fh | 1537-1663 | -

NMT Error Control | 1110b 701h —77Fh | 1793-1919 | 100Ch / 100Dh (NG)

(NodeGuarding,

Heartbeat) 1016h / 1017h (Heartbeat)

5.2 Using the Motion Command Interface in asynchronous

transmission modes

Because the CMD interface of the LinMot controllers consists of more than 8 bytes, it is necessary
to link two or more RxPDOs together to ensure data consistency.

This is done by the “Motion CMD Slave Header”. In order to execute a command, the toggle bits of
all headers have to be changed to the same new value. On the slave header only the last 4 bits
are evaluated, so it is possible to simply copy the “CMD Header” from RxPDO 1 to the “Motion
CMD Slave Header” of RxPDOs 2-4.

NTI AG / LinMot® www.LinMot.com Page 22/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

LinMot®
6 Object Dictionar

In this chapter all entries in the object dictionary, which are supported by the E1200, are
listed.

6.1 Communication Profile Area (1000h - 1FFFh

Index Sub-Index Name Access Type Data Type

1000h - Device Type ro Unsigned32

Always zero (= no standardized device profile).

1001h - Error register ro Unsigned8

=
=)
c
©
=
()]
(8)
“ﬂ_!
.
Q
)
j=
c
Q
Q
g
(&)

Only bit 0 is supported, which indicates a generic error.

1005h - COB-ID SYNC rw Unsigned32

Defines the COB-ID of the Synchronization Object (SYNC).

1006h - Communication cycle period | rw Unsigned32

This object defines the communication cycle period in ps. This period defines the
SYNC interval. It is O if not used.

The object is only relevant for SYNC producers and is not used in CANopen
slaves.

1007h - Synchronous window length rw Unsigned32

Contains the length of the time window for synchronous PDOs in pus. It is O if not
used.
This parameter is for compatibility purposes only, it is not used in the LinMot drive.

1008h - Manufacturer Device Name const Unsigned32

Contains the last four ASCII characters of the article number (e.g. “1760”).

100Ch | - Guard time w Unsigned16

The guard time in milliseconds which is used together with the life time factor for
the node guarding protocol. It is O if not used.

100Dh | - Life time factor w Unsigned8

The life time factor multiplied with the guard time results in the node life time for
the node guarding protocol. It is 0 if not used.

1014h - COB-ID Emergency Object w Unsigned32

Defines the COB-ID of the emergency object (EMCY).

NTI AG / LinMot® www.LinMot.com Page 23/57

CANopen Interface Manual LinMot®

Index Sub-Index Name Access Type Data Type
1016h - Consumer heartbeat time - -
Oh Number of Entries ro Unsigned8
1h Consumer heartbeat time 1 rw Unsigned32

The consumer heartbeat time defines the expected heartbeat cycle time and thus
has to be higher than the corresponding producer heartbeat time configured on
the device producing this heartbeat. Monitoring starts after the reception of the
first heartbeat. If the consumer heartbeat time is 0 the corresponding entry is not
used. The time has to be a multiple of 1ms.

1017h - Producer heartbeat time rw Unsigned16

©
=)
c
©
=
()]
(8)
qlg
S
(]
)
=
c
Q
Q
g
(&)

The producer heartbeat time defines the cycle time of the heartbeat. If not used it
is to be set to 0. The time has to be a multiple of 1ms.

1018h - Identity Object - -
Oh Number of Entries ro Unsigned8
1h Vendor ID ro Unsigned32

The vendor ID contains a unique value allocated to each manufacturer of
CANopen devices. The vendor ID of LinMot is 0000 0156h.

2h Product Code ro Unsigned32

Contains the controller type.

3h Revision Number ro Unsigned32

Contains the controller version.

4h Serial Number ro Unsigned32

Contains the last four ASCII characters of the serial number.

NTI AG / LinMot® www.LinMot.com Page 24/57

CANopen Interface Manual LinMot®

Index Sub-Index Name Access Type Data Type
1400h | - Receive PDO Communication | - - ‘_g
Parameter 0 (RxPDO 1) %
=
Oh Number of Entries ro Unsigned8 o
()
1h COB-ID ro Unsigned32 £
3
28-11 =
0: PDO is valid 0: RTR allowed 0: (11-bit ID) |AllO 11-bit identifier q:,
1: PDO is invalid 1: no RTR allowed 1: (29-bit ID) | if 11-bit 8
identifier E
(&)

The PDO valid/not valid bit allows to select which PDOs are used in the
operational state. Only this bit can be changed by writing to this parameter. The
identifiers themselves cannot be changed. The default ID is 200h + Node-ID.

2h Transmission type rw Unsigned8

Only transmission types 1 (cyclic synchronous), 254 (asynchronous) and 250
(poll-request / poll-response) are supported. Type 250 is LinMot specific and not
part of the CANopen standard. The Default is 1 (cyclic synchronous).

1401h - Receive PDO Communication | - -
Parameter 1 (RxPDO 2)

Oh Number of Entries ro Unsigned8

1h COB-ID ro Unsigned32

The default ID is 300h + Node-ID. See 1400h sub 1h for additional details.

2h Transmission type rw Unsigned8

The default is 1 (cyclic synchronous). See 1400h sub 2h for additional details.

1402h - Receive PDO Communication | - -
Parameter 2 (RxPDO 3)
Oh Number of Entries ro Unsigned8
1h COB-ID ro Unsigned32

The default ID is 400h + Node-ID. See 1400h sub 1h for additional details.

2h Transmission type rw Unsigned8

The default is 1 (cyclic synchronous). See 1400h sub 2h for additional details.

NTI AG / LinMot® www.LinMot.com Page 25/57

CANopen Interface Manual

Index Sub-Index Name Access Type Data Type
1403h - Receive PDO Communication | - -
Parameter 3 (RxPDO 4)
Oh Number of Entries ro Unsigned8
1h COB-ID ro Unsigned32
The default ID is 500h + Node-ID. See 1400h sub 1h for additional details.
2h Transmission type rw Unsigned8
The default is 1 (cyclic synchronous). See 1400h sub 2h for additional details.
1600h - Receive PDO Mapping - -
Parameter 0 (RxPDO 1)
Oh Number of mapped rw Unsigned8
application objects in PDO
Number of valid mapping entries. Can be between 0 and 8.
1h-8h PDO Mapping Entry 1-8 rw Unsigned32
Contains the mapping for RxPDO 1. A mapping entry is built as follows:
16-31 8-15 0-7
index sub-index Object length
1601h - Receive PDO Mapping - -
Parameter 1 (RxPDO 2)
Oh Number of mapped rw Unsigned8
application objects in PDO
Number of valid mapping entries. Can be between 0 and 8.
1h-8h PDO Mapping Entry 1-8 rw Unsigned32
Contains the mapping for RxPDO 2 See 1600h sub 1-8h for additional details.
1602h - Receive PDO Mapping - -
Parameter 2 (RxPDO 3)
Oh Number of mapped rw Unsigned8
application objects in PDO
Number of valid mapping entries. Can be between 0 and 8.
1h-8h PDO Mapping Entry 1-8 rw Unsigned32
Contains the mapping for RxPDO 3 See 1600h sub 1-8h for additional details.
NTI AG / LinMot® www.LinMot.com Page 26/57

(_U
=)
c
©

=
()]
(8)

qtg
S
(]

)

=
c
Q
Q

g

(&)

CANopen Interface Manual

Index Sub-Index Name

Access Type Data Type

1603h - Receive PDO Mapping - -
Parameter 3 (RxPDO 4)
Oh Number of mapped rw Unsigned8
application objects in PDO
Number of valid mapping entries. Can be between 0 and 8.
1h-8h PDO Mapping Entry 1-8 rw Unsigned32
Contains the mapping for RxPDO 4 See 1600h sub 1-8h for additional details.
1800h - Transmit PDO - -
Communication Parameter 0
(TxPDO 1)
Oh Number of Entries ro Unsigned8
1h COB-ID ro Unsigned32

0: PDO is valid
1: PDO is invalid

28-11

0: RTR allowed 11-bit identifier

1: no RTR allowed

0: (11-bit ID) |AllQ's
1: (29-bit ID) |if 11-bit
identifier

The PDO valid/not valid bit allows to select which PDOs are used in the
operational state. Only this bit can be changed by writing to this parameter. The
identifiers themselves cannot be changed. The default ID is 180h + Node-ID.

2h

Transmission type rw Unsigned8

Only transmission types 1 (cyclic synchronous), 254 (asynchronous) and 250
(poll-request / poll-response) are supported. Type 250 is LinMot specific and not
part of the CANopen standard. The Default is 1 (cyclic synchronous).

3h

Inhibit time w Unsigned16

This time is a minimum interval for PDO transmission in asynchronous modes.
The value is defined as multiple of 100us.

4h

Reserved rw Unsigned8

5h

Event timer rw Unsigned16

In asynchronous modes additionally an event time can be used for TPDOs. If an
event timer exists for a TPDO (value not equal to 0) the elapsed timer is
considered to be an event. The event timer elapses as a multiple of 1 ms . This
event will cause the transmission of this TPDO in addition to otherwise defined
events.

NTI AG / LinMot®

www.LinMot.com Page 27/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual

Index Sub-Index Name Access Type Data Type
1801h - Transmit PDO - -
Communication Parameter 1
(TxPDO 2)
Oh Number of Entries ro Unsigned8
1h COB-ID ro Unsigned32
The default ID is 280h + Node-ID. See 1800h sub 1h for additional details.
2h Transmission type rw Unsigned8
The default is 1 (cyclic synchronous). See 1800h sub 2h for additional details.
3h Inhibit time rw Unsigned16
See 1800h sub 3h for additional details.
4h Reserved rw Unsigned8
5h Event timer rw Unsigned16
See 1800h sub 5h for additional details.
1802h - Transmit PDO - -
Communication Parameter 2
(TxPDO 3)
Oh Number of Entries ro Unsigned8
1h COB-ID ro Unsigned32
The default ID is 380h + Node-ID. See 1800h sub 1h for additional details.
2h Transmission type rw Unsigned8
The default is 1 (cyclic synchronous). See 1800h sub 2h for additional details.
3h Inhibit time rw Unsigned16
See 1800h sub 3h for additional details.
4h Reserved rw Unsigned8
5h Event timer rw Unsigned16
See 1800h sub 5h for additional details.
NTI AG / LinMot® www.LinMot.com Page 28/57

(_U
=)
c
©

=
()]
(8)

“N_!
S
(]

)

=
c
Q
Q

g

(&)

CANopen Interface Manual

Index Sub-Index Name Access Type Data Type
1803h - Transmit PDO - -
Communication Parameter 3
(TxPDO 4)
Oh Number of Entries ro Unsigned8
1h COB-ID ro Unsigned32
The default ID is 480h + Node-ID. See 1800h sub 1h for additional details.
2h Transmission type rw Unsigned8
The default is 1 (cyclic synchronous). See 1800h sub 2h for additional details.
3h Inhibit time rw Unsigned16
See 1800h sub 3h for additional details.
4h Reserved rw Unsigned8
5h Event timer rw Unsigned16
See 1800h sub 5h for additional details.
1A00h - Transmit PDO Mapping - -
Parameter 0 (TxPDO 1)
Oh Number of mapped rw Unsigned8
application objects in PDO
Number of valid mapping entries. Can be between 0 and 8.
1h-8h PDO Mapping Entry 1-8 rw Unsigned32
Contains the mapping for TXPDO 1 See 1600h sub 1-8h for additional details.
1A01h - Transmit PDO Mapping - -
Parameter 1 (TxPDO 2)
Oh Number of mapped w Unsigned8
application objects in PDO
Number of valid mapping entries. Can be between 0 and 8.
1h-8h PDO Mapping Entry 1-8 rw Unsigned32
Contains the mapping for TXPDO 2 See 1600h sub 1-8h for additional details.
NTI AG / LinMot® www.LinMot.com Page 29/57

(_U
=)
c
©
=
()]
(8)
“N_!
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual - LinMot®

Index Sub-Index Name Access Type Data Type

Number of valid mapping entries. Can be between 0 and 8.

Contains the mapping for TXPDO 3 See 1600h sub 1-8h for additional details.

=
=)
c
©
=
[}
(&
8
—
Q
)
<
c
o
Q
%
&

Number of valid mapping entries. Can be between 0 and 8.

Contains the mapping for TXPDO 4 See 1600h sub 1-8h for additional details.

[NTIAG/LinMot® [www.LinMot.com L Page30/57

LinMot®
6.2 Manufacturer specific Profile Area (2000h — 5FFFh

6.2.1 UPID Commands

Read / Write the RAM Value of a UPID. Any UPID from a Boolean type up to an
unsigned32 type can be read or written.

©

=2

Parameters can be modified via their UPIDs (Unique Parameter ID) via CANopen. To use a UPID %
command, an SDO read or write has to be performed on the index “2000h + UPID”. The sub-index =
specifies the command which is performed. 8
£

Index Sub-Index Description Access Type Data Type i
(=

2000h + | 01h RAM Value w Bool - Unsigned32 c
Q

UPID o
2

(&)

Read RAM Value by UPID
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h yyh yyh 01h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID

Write RAM Value by UPID
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data Data
Data 23h yyh yyh 01h xxh xxh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID
XX Xx xx xx: Value to write (size depends on the UPID that will be written)

NTI AG / LinMot® www.LinMot.com Page 31/57

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type
2000h + | 02h ROM Value rw Bool - Unsigned32
UPID

Read / Write the ROM Value of a UPID. Any UPID from a Boolean type up to an
unsigned32 type can be read or written. If a value in the ROM is changed, it is not

yy yy: 2000h + UPID

immediately reflected in the RAM. Values are read from the ROM to the RAM on §

startup of the controller. Use the “RAM/ROM Write” command (sub-index 06h) to c

changes both values at the same time. g

Read ROM Value by UPID 8
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller: ug
SDO CS Index Sub-Index 9

Data 40h yyh yyh 02h - - - - =
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB) qC,
Q

2

(&)

Write ROM Value by UPID
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:
SDO CS Index Sub-Index Data Data
Data 23h yyh yyh 02h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID
XX Xx xx xx: Value to write (size depends on the UPID that will be written)

2000h + | 03h Min Value ro Bool - Unsigned32
UPID

The minimal possible value of the UPID is returned.

Read Min Value by UPID
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h yyh yyh 03h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID

NTI AG / LinMot® www.LinMot.com Page 32/57

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type
2000h + | 04h Max Value ro Bool - Unsigned32
UPID

The maximal possible value of the UPID is returned.

Read Max Value by UPID
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:
SDO CS Index Sub-Index
Data 40h yyh yyh 04h - - - -
02 03 04 05 06 07 08 (MSB)

Byte (01 (LSB)
yy yy: 2000h + UPID
2000h + | 05h Default Value ro Bool - Unsigned32

UPID

=
=)
c
©
=
()]
(8)
qlg
.
Q
)
<
c
Q
Q
g
(&)

The default value of the UPID is returned.

Read Default Value by UPID
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h yyh yyh 05h - - - -
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID

2000h | 06h RAM/ROM Write wo Bool - Unsigned32
+ UPID

Write the RAM and ROM Value of a UPID. Any UPID from a Boolean type up to
an unsigned32 type can be written.

Write RAM/ROM Value by UPID
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data Data
Data 23h yyh yyh 06h xxh xxh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID
XX XX XX xx: Value to write (size depends on the UPID that will be written)

NTI AG / LinMot® www.LinMot.com Page 33/57

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type

2000h 20h Start Getting UPID List wo Unsigned16

With this command, the starting UPID can be set from which the command “Get
Next UPID List item” begins returning info when called. This command has to be
sent at least once before information on UPIDs can be retrieved via the “Get Next
UPID List item” command.

Start getting UPID List
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data Data
Data 23h yyh yyh 20h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX Xx xx: Any Data
yy yy: 2000h + UPID

2000h 21h Get Next UPID List item ro Unsigned32

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
g
(&)

With this command information on UPIDs can be read. After the initialisation with
the command “Start getting UPID List”, information on UIPIDs can be read with
this command. The command can be repeatedly issued. With each new
command, the information on the next existing UPID is sent.

When the end of the list is reached, the UPID FFFFh is sent.

Get Next UPID List item
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h yyh yyh 21h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

yy yy: 2000h + UPID

Return Value

COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index Address Usage UPID found
Data 42h yyh yyh 21h yyh yyh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB

yy yy: Address Usage
xx xx: UPID which was found

Address Usage is interpreted as follows:

o =
X T XX ¥ S 2
> > O O C 530 e 3
= s =< 5 082 g2

-+ =0
g 28 = Ny 288 Z3
o ® o o 3 S5 mae
®» 9 » o 3 5SS 28
S & 5 o o o9 o
g s 22 5 552 EZ
3 33 8 %$$

o o

BitNr.. |0 112 |3 |4 |5 |6 |7 |8 |9 |10[11 |12 13 |14 |15
(LSB) (MSB)

NTI AG / LinMot® www.LinMot.com Page 34/57

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type
2000h 22h Start Getting Modified UPID wo Unsigned16
List

This command is used in the same way as the “Start Getting UPID List”
command (2000h sub 20h). Only UPIDs with values that differ from their default
values are returned.

2000h 23h Get Next Modified UPID List ro Unsigned32
item

This command is used the in same way as the “Get Next UPID List item”
command (2000h sub 21h). Only UPIDs with values that differ from their default
values are returned.

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

NTI AG / LinMot® www.LinMot.com Page 35/57

LinMot®
6.2.2 System Commands

Index Access Type Data Type

Sub-Index Description

2000h 07h Set ROM to default wo Unsigned8 - Unsigned32 ©
(0S) E
(O
Set all parameters of the OS to default values. This command needs about 0.5s =
to finish. Any data can be written for the command to be executed. 8
1)
[*A4
Set ROM to default (OS) o
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller: =
SDO CS Index Sub-Index Data c
Data 23h 00h 20h 07h xxh xxh xxh xxh 8
Byte (01 (LSB) 02 03 04 05 06 07 08 (MSB) o
XX XX XX xx: Any Data g
2000h 08h Set ROM to default wo Unsigned8 - Unsigned32
(MC SW)
Set all parameters of the MC SW to default values. This command needs about
2s to finish. Any data can be written for the command to be executed.
Set ROM to default (MC SW)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:
SDO CS Index Sub-Index Data
Data 23h 00h 20h 08h xxh xxh xxh xxh
Byte (01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX Xx xx: Any Data

NTI AG / LinMot® www.LinMot.com Page 36/57

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type
2000h 09h Set ROM to default wo Unsigned8 - Unsigned32
(Interface)

Set all parameters of the Interface to default values. This command needs about
0.5s to finish. Any data can be written for the command to be executed.

Set ROM to default (Interface)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h 00h 20h 09h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX Xx xx: Any Data

2000h 0Ah Set ROM to default wo Unsigned8 - Unsigned32
(Application)

Set all parameters of the Application to default values. This command needs
about 0.5s to finish. Any data can be written for the command to be executed.

Set ROM to default (Application)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h 00h 20h 0Ah xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX Xx xx: Any Data

2000h 0Bh Reset Controller wo Unsigned8 - Unsigned32

Initiates a software reset of the controller. Any data can be written for the
command to be executed.

Reset Controller
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:
SDO CS Index Sub-Index Data
Data 23h 00h 20h 0Bh xxh xxh xxh xxh
Byte |[01(LSB) 02 03 04 05 06 07 08 (MSB)

XX XX Xx xx: Any Data

2000h 35h Stop MC and APPL Software wo Unsigned8 - Unsigned32

MC SW and Application SW are stopped. Any data can be written for the
command to be executed.

Stop MC and APPL Software
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h 00h 20h 35h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB

XX XX Xx xx: Any Data

NTI AG / LinMot® www.LinMot.com Page 37/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type

2000h 36h Start MC and APPL Software | wo Unsigned8 - Unsigned32

MC SW and Application SW are started. Any data can be written for the
command to be executed.

Start MC and APPL Software
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:
SDO CS Index Sub-Index Data
DEF:] 23h 00h 20h 36h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX Xx xx: Any Data

6.2.3 Curve Service Commands

See the “LinMot 1100 Servo Controller Configuration over Fieldbus Interfaces” for additional detail on the
use of curve commands and a description of the content of the curve info and data blocks.

Index Sub-Index Description Access Type Data Type

2000h 40h Curve Service: Save to Flash | wo Unsigned8 - Unsigned32

All curves are saved from the RAM to the flash and are thus permanently saved.
MC SW and application have to be stopped in order for this command to work
(see command 2000h sub 35: Stop MC and Application Software).

Any data can be written for the command to be executed.

Curve Service: Save to Flash
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h 00h 20h 40h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX XX xx: Any Data

2000h 41h Curve Service: Delete all wo Unsigned8 - Unsigned32
Curves (RAM)

All curves in the RAM are deleted. This does NOT delete curves from the flash.
After a system reset, the curves are loaded again from the flash to the RAM.
Any data can be written for the command to be executed.

Curve Service: Delete all Curves (RAM)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h 00h 20h 41h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX XX Xx: Any Data

NTI AG / LinMot® www.LinMot.com Page 38/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual

Index

2000h

Sub-Index Description

42h

Curve Service: Poll Flash

Access Type

ro

Data Type

Unsigned8

Read Parameter to get the status of a flash operation:

Result = 00h : State = Idle

Result = 04h : State = Busy
This command can be used to check if a flash operation is still ongoing (e.g.
command 2000h sub 40h: Curve Service:save to flash)

Curve Service: Poll Flash
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h 00h 20h 42h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value

COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

Curve Service Command

Result

SDO CS Index Sub-Index Result
Data 42h 00h 20h 42h xxh - - -
Byte (01 (LSB) 02 03 04 05 06 07 08 (MSB)
xx: Result
2000h 43h Curve Service: Get Last ro Unsigned32

This command is used the get the results of curve service commands which are
initiated with an SDO write command from the PLC.
The result of the last executed curve service command is given in the following

format:

Get Last Curve Service Command Result

COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h 00h 20h 43h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Sub-Index Result CSCindex
Data 42h yyh yyh 43h zzh yyh yyh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
zz: Result of the executed command. See the corresponding command for details on how to
interpret these results, as its meaning differs from command to command.

yy yy: Index of the last executed curve service command which can have a result.
XX: Index of the last executed curve service command which can have a result.

NTI AG / LinMot® www.LinMot.com Page 39/57

=
=)
c
©
=
()]
(8)
“ﬂ_!
.
Q
)
<
c
Q
Q
g
(&)

CANopen Interface Manual

Index

2000h +
CurvelD

Sub-Index Description

50h

Access Type Data Type

Curve Service: Add Curve wo Unsigned32

With this command a curve with the ID “CurvelD” will be created. Up to 100
curves can be programmed into the controller. If a curve with the same ID
already exists, an error will be generated which can be checked with the “Get
Last Curve Service Command Result” command:

00h: No Error
D4h: Curve already exists

Curve Service: Add Curve
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Sub-Index InfoBlo
Data 23h CurvelD 20h 50h xxh xxh yyh yyh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

xx xx: Size of the curve info block in bytes
yy yy: Size of the curve data block in bytes

2000h +
CurvelD

53h

Curve Service: Add Curve wo
Data (32 Bit)

Unsigned32

The Curve Data Block can be written in increments of 4 Bytes at a time. This
way one setpoint (32Bit) can be written at a time

To write the Data Block, this command has to be repeatedly called, with each
call containing the next setpoint of the Data Block.

With the “Get Last Curve Service Command Result” command, one can check
if the Info Block has already been written:

00h: Data Block is finished
04h: Data Block is not finished
DOh: Error: Data Block was already finished

Curve Service: Add Curve Data (32Bit)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index InfoBlock Data
Data 23h CurvelD 20h 53h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX Xx xx xx: Curve data block data: one setpoint as a 32Bit value

NTI AG / LinMot®

www.LinMot.com Page 40/57

©
=)
c
©
=
()]
(8)
qlg
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual

Unsigned32

Index Sub-Index Description Access Type Data Type
2000h + | 54h Curve Service: Add Curve wo
CurvelD Info Block (32 Bit)

call containing the next 4 bytes of the info block.
if the info block has already been written:

00h: Info Block is finished
04h: Info Block is not finished
DOh: Error: Info Block was already finished

Curve Service: Add Curve Info Block (32Bit)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

The Curve Info Block can be written in increments of 4 bytes at a time.
To write the info block, this command has to be repeatedly called, with each

With the “Get Last Curve Service Command Result” command, one can check

SDO CS Index Sub-Index InfoBlock Data
Data 23h CurvelD 20h 54h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX XX xx: Curve info block data
2000h + | 60h Curve Service: Get Curve ro Unsigned32
CurvelD

afterwards.

Curve Service: Get Curve

COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

The “Get Curve” command has to executed first in order to read a curve from
the controller via SDO. With the commands “Get Curve Info Block” and “Get
Curve Data Block” the corresponding blocks of the curve can be read

SDO CS Index Sub-Index
Data 40h 00h 20h 60h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

D4h = Curve does not exist
yy: Curve Info Block Size in Bytes

zz zz: Curve Data Block Size in Bytes

SDO CS Sub-Index Result CSinfoB CSDataBlockSize
lockSize
Data 42h CurvelD 20h 60h xxh yyh zzh zzh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX: Result: 00h = Curve exists

NTI AG / LinMot® www.LinMot.com

Page 41/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual

Index

2000h +
CurvelD

Sub-Index

61h

Description

Access Type

Curve Service: Get Curve ro

Info Block

Data Type

Unsigned32

The Curve Info Block can be read in increments of 4 Bytes.
To read the Info Block, this command has to be repeatedly called, with each

call one can read the next 4 Bytes of the Info Block.

With the “Get Last Curve Service Command Result” command, one can check

if the Info Block has already been read:
00h: Info Block is finished
04h: Info Block is not finished
DOh: Error: Info Block was already finished

Curve Service: Get Curve Info Block
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h 00h 20h 61h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index InfoBlock Data
Data 42h CurvelD 20h 61h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX XX XX: Info Block Data
2000h + | 62h Curve Service: Get Curve ro Unsigned32
CurvelD Data

Data

Byte

The Curve Data Block can be read in increments of 4 Bytes.
To read the Data Block, this command has to be repeatedly called, with each

call one can read the next 4 Bytes of the Data Block.

With the “Get Last Curve Service Command Result” command, one can check

if the Data Block has already been read:
00h: Data Block is finished
04h: Data Block is not finished
DOh: Error: Info Block was already finished

Curve Service: Get Curve Data Block
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
40h 00h 20h 62h - - - -
01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index DataBlock Data
Data 42h CurvelD 20h 62h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX XX XX: Data Block Data
NTI AG / LinMot® www.LinMot.com Page 42/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
g
(&)

LinMot ®
6.2.4 Error Log Commands

With these commands the error log of a controller can be read.

Index

Sub-Index Description

Access Type Data Type

©
3
2000h 70h Get Error Log Entry Counter | ro Unsigned32 %
This command returns the number of logged errors as well as the total number of %
occurred errors. o
£
Get Error Log Entry Counter 9
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller: =
SDO CS Index Sub-Index qC,
Data 40h 00h 20h 70h - - - = Q
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB) g
Return Value (&)
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:
SDO CS Index Sub-Index NrOfLoggedErr NrOfOccErr
Data 42h CurvelD 20h 70h xxh xxh yyh yyh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
xx xx: Number of logged errors
yy yy: Number of occurred errors
2000h + | 71h Get Error Log Entry Error ro Unsigned32
EntryNr Code

This command returns the corresponding error code to the entry number.

Get Error Log Entry Error Code
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

1: 0OS

2: Motion Control Software
3: Interface (e.g. CANopen)
4: Application (e.g. EasySteps)

SDO CS Index Sub-Index
Data 40h 00h 20h 71h - - - -
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:
SDO CS Index Sub-Index SourcelD Error Code
Data 42h CurvelD 20h 71h xxh xxh yyh yyh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
xx xx: SourcelD: ID of the part of the firmware which triggered the error:

yy yy: Error Code: Further Information on the meaning of the error codes can be found in the
manuals of the respective firmware parts.
NTI AG / LinMot® www.LinMot.com Page 43/57

CANopen Interface Manual LinMot®

Index Sub-Index Description Access Type Data Type
2000h + | 72h Get Error Log Entry Time low | ro Unsigned32
EntryNr

This command returns the lower 32 bits of the controllers system time when the
error has occurred.

Get Error Log Entry Time low
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h 00h 20h 72h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index Time Low
Data 42h CurvelD 20h 72h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX XX xx: Lower 32 Bits of the system time the error occurred.

2000h + | 73h Get Error Log Entry Time ro Unsigned32
EntryNr high

This command returns the higher 32 bits of the controllers system time when the
error happened.

Get Error Log Entry Time high
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h 00h 20h 73h - - - -
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index Time High
Data 42h CurvelD 20h 73h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

xx xx xx xx: Higher 32 Bits of the system time the error occurred.

NTI AG / LinMot® www.LinMot.com Page 44/57

©
=)
c
©
=
()]
(8)
qlg
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual LinMot®

Sub-Index Description Access Type Data Type
2000h + | 74h + Get Error Code Text Stringlet | ro Unsigned32
ErrCode | (Stringlet

Nr. 0..7)

This command returns an error stringlet to a the corresponding error code.
A stringlet is made up of four ASCII characters. Error code texts can have a
maximum of 32 characters.

Get Error Code Text Stringlet
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

©
=)
c
©
=
()]
(8)
qlg
S
(]
)
=
c
Q
Q
g
(&)

SDO CS Index Sub-Index
Data 40h 2000h + ErrCode 74h + - - - -
Stringlet Nr.
Byte |01 (LSB) 02 [03 04 05 06 07 08 (MSB)
Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:
SDO CS Index Sub-Index
Data 42h 2000h + ErrCode 74h + xxh xxh xxh xxh
Stringlet Nr.
Byte |01 (LSB) 02 | 03 04 05 06 07 08 (MSB)

xx Xx Xx xx: Stringlet (each byte represents one character in ASCII format)

6.2.5 Command Table Commands

See the “LinMot 1100 Servo Controller Configuration over Fieldbus Interfaces” for additional detail on the
use of the command table and a description of the CT entry format.

Index Sub-Index Description Access Type Data Type

2000h 80h CT: Save to Flash wo Unsigned8 - Unsigned32

Write any data with this command to save the command table which is in the
RAM to the ROM. The command table is loaded on startup of the controller from
the ROM to the RAM.

Any data can be written for the command to be executed.

Command Table: Save to Flash
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index InfoBlock Data
Data 23h 00h 20h 80h xxh xxh xxh xxh
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX XX Xx: Any data

NTI AG / LinMot® www.LinMot.com Page 45/57

CANopen Interface Manual

Index

2000h

Sub-Index Description

80h

CT: Poll Flash

Access Type

ro

Data Type

Unsigned8

Read Parameter to get the status of a flash operation:

Result = 00h : State = Idle

Result = 04h : State = Busy

Return Value

COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

This command can be used to check if a flash operation is still ongoing (e.g. ‘_g

command 2000h sub 80: CT:save to flash) %

Command Table: Poll Flash %
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller: S
SDO CS Index Sub-Index =

Data 40h 00h 20h 80h - - - - 2
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB) =
c

Q

Q

2

(&)

SDO CS Index Sub-Index Result
Data 42h 00h 20h 80h xxh - - -
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
xx: Result
2000h 81h CT: Delete all Entries (RAM) wo Unsigned32

Write anything to delete the complete Command Table in the RAM.

Command Table: Delete all Entries (RAM)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h 00h 20h 81h xxh xxh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX XX Xx: Any data
2000h + | 82h CT: Delete Entry (Entry Nr.) wo Unsigned32
EntryNr

Write anything to delete the CT entry with the corresponding number in the RAM.

The ROM entry of the CT entry is not deleted this way.

Command Table: Delete Entry (Entry Nr.)
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index Data
Data 23h EntryNr 20h 82h xxh xxh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

XX XX XX Xx: Any data

NTI AG / LinMot® www.LinMot.com Page 46/57

CANopen Interface Manual

Index Sub-Index Description Access Type Data Type
2000h + | 83h CT: Write Entry (Entry Nr.) wo Unsigned32
EntryNr

This command has to be executed first if one wants to write write a CT entry to
the RAM. This command writes the block size of the CT entry to the RAM.

Afterwards the data for the entry can be written with the command “CT: Write ‘_g

Entry Data”. c

=

Command Table: Write Entry (Entry Nr.) @

COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller: S

SDO CS Index Sub-Index Block Size =

Data 23h EntryNr 20h 83h xxh xxh - - i

Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB) =

c

xx xx: Block size of CT entry 8

o

2000h + | 84h CT: Write Entry Data wo Unsigned32 LE)
EntryNr

The CT entry data can be written in increments of 4 Bytes.
To write the entry data, this command has to be repeatedly called,

while each call contains the next 4 bytes of data.

The entry will be activated when the last byte of the entry data has

been written.

Command Table: Write Entry Data
COB-ID 600 + Node-ID, SDO Write from PLC to LinMot Controller:

SDO CS Index Sub-Index CT Entry Data
Data 23h EntryNr 20h 84h xxh xxh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
xx Xx xx xx: CT entry Data
2000h + | 85h CT: Get Entry (Entry Nr.) ro Unsigned32
EntryNr

Read the block size of a CT Entry.

Command Table: Get Entry (Entry Nr.)
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h EntryNr 20h 85h - - - -
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index Block Size
Data 42h EntryNr 20h 85h xxh xxh - -
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

xx xx: Block size

NTI AG / LinMot® www.LinMot.com Page 47/57

CANopen Interface Manual

Index

2000h +
EntryNr

Sub-Index

86h

Description

CT: Get Entry Data

Access Type

ro

Data Type

Unsigned32

The CT entry data can be read in increments of 4 Bytes.
To read the entry data, this command has to be repeatedly called,
while the response to each call contains the next 4 bytes of data.

Command Table: Get Entry Data
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
Data 40h EntryNr 20h 86h - - - -
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

0..31)

SDO CS Index Sub-Index Entry Data
Data 42h EntryNr 20h 86h xxh xxh xxh xxh
Byte |01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX XX xx: Entry data
2000h 87h CT: Get Entry List (Entry ro Unsigned32

Data
Byte

With this command a bitfield is read, which indicates the presence of a CT
entry (0 = CT entry present, 1 = No CT entry present).

CT: Get Entry List (Entry 0..31)
COB-ID 600 + Node-ID, SDO Read from PLC to LinMot Controller:

SDO CS Index Sub-Index
40h 00h 20h 87h - - - -
01 (LSB) 02 03 04 05 06 07 08 (MSB)

Return Value
COB-ID 580 + Node-ID, Response from LinMot Controller to PLC:

SDO CS Index Sub-Index ntry presence bitfiel
Data 42h 00h 20h 87h xxh xxh xxh xxh
Byte (01 (LSB) 02 03 04 05 06 07 08 (MSB)
XX XX XX xx: Entry presence bitfield
2000h 88h CT: Get Entry List (Entry ro Unsigned32
32..63)
See command 2000h sub 87h for details.
2000h 89h CT: Get Entry List (Entry ro Unsigned32
64..95)
See command 2000h sub 87h for details.
NTI AG / LinMot® www.LinMot.com Page 48/57

©
=)
c
©
=
()]
(8)
“N_!
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual -

Index Sub-Index Description Access Type Data Type

See command 2000h sub 87h for details.
See command 2000h sub 87h for details.

See command 2000h sub 87h for details.
See command 2000h sub 87h for details.

©
=)
c
©
=
[}
(&
8
—
(<}
)
<
c
o
Q
%
&

See command 2000h sub 87h for details.

[NTIAG/LinMot® [www.LinMot.com I Page49s7

CANopen Interface Manual LinMot®

7.1 Homing and motion commands

For details on the use of motion commands, consult the manual “Usermanual
MotionCtrISW 1100”.

The following example shows the homing procedure and execution of a motion command
via CANopen with the default PDO mapping:

1) Homing (Control Word = 083Fh)

RxPDO 1

ControlWord MCHeader MC Par Bytes 0..3
Data 3Fh 08h 00h 00h 00h 00h 00h 00h
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

2) Enter Operational State (Control Word = 003Fh)

RxPDO 1

ControlWord MCHeader MC Par Bytes 0..3
Data 3Fh 00h 00h 00h 00h 00h 00h 00h
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

3) Execute Motion Command : VAl 16Bit Go To Pos (090xh)

CMD Header > 0901h

Par Byte 0...1 > Target Position : 50mm 01F4h

Par Byte 2...3 > Maximal Velocity : 1m/s 03E8h

Par Byte 4...5 > Acceleration : 10m/s? 0064h

Par Byte 6...7 > Deceleration : 10m/s? 0064h
RxPDO 1

ControlWord MCHeader MC Par Bytes 0..3
Data 3Fh 00h 01h 09h F4h 01h E8h 03h

Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)
RxPDO 2

MC Par Bytes 4..7 MC Par Bytes 8..11
Data 64h 00h 64h 00h 00h 00h 00h 00h
Byte 01 (LSB) 02 03 04 05 06 07 08 (MSB)

NTI AG / LinMot® www.LinMot.com Page 50/57

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

CANopen Interface Manual LinMot®

In the LinMot-Talk1100 Control Panel, one can check the last executed motion command
by pressing the «Read Command» button. It should look like this now that the command
has been executed:

©

=

c

(1]

=

tation Command Interface 8

L N1

Enable tanual Override: [| | | | —

)

=

: | Velocity-Aoceleration | | 1] 16Bi | &

Command Category: elocity-Acceleration Interpolator (WAl it - 8

Command Type: |41 16Bit Go To Pas (030xh] ~|3 o

Count Mibble [Toggle Bits): |1Th = [dwuta Increment Count Nibble g

M arne | Offs. | Description | Scaled Value Int. Value (Dec) | Int. Value [Hex) |

Header 0 090uh: Y4l 16Bit Go To Poz 2305 2305 0901 h
1. Par 2 T arget Pozition A0 i R00 11F4k
2 Par 4 b awirmal Y elocity 1 mis 1000 03E8h
3 Par B Arcceleration 10mis"2 100 00G4h
4. Par a Deceleration 10 mis"2 100 00&4dh

Read Cormmand

NTI AG / LinMot® www.LinMot.com Page 51/57

LinMot®
8 Reset Parameters to default values

There are three options to reset the parameters of a LinMot E12x0 controller to default
values:

1) By manipulating the two rotary hex switches (resets ALL parameters):
1. Power off the controller
2. Set the switches to FFh
3. Power on the controller (Error and Warn LEDs flash alternating)
4. Set the switches to 00h
5. Wait until Enable and Warn LED start to turn off and on
6. Power off the controller

2) By writing index 2000h sub-index 7h, 8h, 9h, Ah of the object dictionary.
After resetting the ROM values, a reset should be performed either by sending a
“‘NMT Reset” command or by turning the controller off and on again. This has to
be done to reload the RAM values from the ROM.

a
=)
c
©

=
()]
(8)

“ﬂ_i
S
()
)

=
c
Q
Q
g

(&)

3) Reinstalling the firmware will always reset all parameters to default values

NTI AG / LinMot® www.LinMot.com Page 52/57

LinMot®
9 Configuration of the E1200 with an EDS File

The EDS file for the E1200 series is compliant with the standard:
“CiA 306 DS V1.3: Electronic data sheet specification for CANopen”.
Visit http://www.can-cia.org/ for detailed information.

The EDS file is part of the Lintalk1100 software which can be downloaded from
http://www.LinMot.com.

The EDS file is located at “..\Firmware\lnterfaces\CanOpen\EDS” in the installation
folder of the LinMot-Talk1100 software.

Consult the usermanual of your PLC for details on how to use an EDS file with it.

a
=)
c
©

=
()]
(8)

“ﬂ_!
S
()
)

=
c
Q
Q

%

(&)

If an EDS file is used, in most cases the PLC will automatically download
f this configuration via SDO commands to the servo controller.

This is done before the controller is set to the operational state.
Any configuration settings that have been done in the
LinMot-Talk1100 software are overwritten this way!

9.1 Confiquring a PDO variable by UPID with the EDS file

For every PDO a maximum of 4 parameters can be mapped by their UPIDs.

If a parameter is configured to a PDO via its UPID, the used space in the PDO is
dependent on the data type of the configured parameter. If a boolean variable is
configured, one byte of the PDO is used.

9.1.1 Setting the UPIDs of the parameter to map

The UPIDs to map can be set via the dictionary entries 4F01h sub 1-4h for RxPDO1 to
4F08h sub 1-4h for TxXPDO4. The controller automatically maps those parameters to the
PDOs. If to much data would be mapped to one PDO, an error is generated.

9.1.2 Getting UPID PDO data into PLC variables

Since any parameter with a UPID can be mapped this way, it is not possible to reflect this
with the EDS file. The user has to configure the PDO mapping on the PLC with dummy
variables for the UPIDs. This way the PLC recognizes that data will be transmitted at the
according bytes in the PDO. For every PDO there are several of those placeholders
(Objects 4F01h sub 5-Ah for RxPDO1 to 4F08h sub 5-Ah for TxPDO4).

The mapping entries in the object dictionary contain the entries for mapped UPIDs
(4FO01h — 4F08h) and NOT the placeholder-objects for the PLC.

NTI AG / LinMot® www.LinMot.com Page 53/57

http://www.LinMot.com/
http://www.can-cia.org/

LinMot ®
9.1.3 Example

Configuration of TxPDO4 to transmit the following parameters:
— X4.4 Analog Voltage (UPID 1CA4h), UInt16
— Diff Analog Voltage (UPID 1CA6h), SInt16
— Difference Velocity (UPID 1B91h), Sint32

1. Configuring the UPIDs:

Object dictionary entry to write Value

4F08h sub 1h (TPDO4 UPIDs 1) | 1CA4h
4F08h sub 2h (TPDO4 UPIDs 2) | 1CA6h
4F08h sub 3h (TPDO4 UPIDs 3) |1B91h

©
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

2. Setthe PDO mapping in the PLC:

Object dictionary entry to map Map entry to

4F08h sub 7h (TPDO4 2 Byte UPID mapped) TPDO4
4F08h sub 8h (TPDO4 2 Byte UPID mapped) TPDO4
4F08h sub 9h (TPDO4 4 Byte UPID mapped) TPDO4

3. The TxPDO4 now contains the following data:

TxPDO 4
X4.4 Analog Diff Analog Difference Velocity

Volta Voltage
xxh zzh
Byte 01 (LSB) 08 (MSB)

The PDO mapping entries in the object dictionary look like this:

Mapping entry Value

1A03h sub 1h
(Transmit PDO Mapping Parameter 3: PDO mapping entry 1) ARUSITEn

1A03h sub 2h
(Transmit PDO Mapping Parameter 3: PDO mapping entry 2)

1A03h sub 3h
(Transmit PDO Mapping Parameter 3: PDO mapping entry 3)

4F080210h

4F080320h

NTI AG / LinMot® www.LinMot.com Page 54/57

CANopen Interface Manual
10 Interface Error Codes

Please refer to “Usermanual Motion Control Software” for the error codes of the MC
software. The CANopen interface has the following additional error codes:

Error Code Error Description

Recommended Actions

LinMot®

C1h The Controller is not compatible with The controller does not support CANopen
CANopen interface software. Download an appropriate
firmware to the controller.

C2h The configured ID is not valid (switches or Select a valid node address.

parameter)

C5h CANopen Error: Bus error Check CAN termination, baud rate and
cabling.

Cé6h CANopen Error: general Bus error Check CAN termination, baud rate and
cabling.

C7h CANopen Error: Bus error, stuff error Check CAN termination, baud rate and
cabling.

C8h CANopen Error: Bus error, form error Check CAN termination, baud rate and
cabling.

Coh CANopen Error: Bus error, ack error Check CAN termination, baud rate and
cabling.

CAh CANopen Error: Bus error, bit 1 error Check CAN termination, baud rate and
cabling.

CBh CANopen Error: Bus error, bit O error Check CAN termination, baud rate and
cabling.

CCh CANopen Error: Bus error, CRC error Check CAN termination, baud rate and
cabling.

CDh CANopen Error: Error Control Timeout CANopen Timeout.

Is the master running?

CFh CANopen Error: Invalid ID by Hex Switch S1 | Invalid baud rate selected by S1. Check S1.
Only 1..4 are valid settings.

DOh CANopen Error: Invalid Mapping in TXPDO 1 | More than 8 byte data mapped into TPDO 1.
Verify the mapping (by UPID should be 0 to
be deactivated).

D1h CANopen Error: Invalid Mapping in TXPDO 2 | More than 8 byte data mapped into TPDO 2.
Verify the mapping (by UPID should be 0 to
be deactivated).

D2h CANopen Error: Invalid Mapping in TXPDO 3 | More than 8 byte data mapped into TPDO 3.
Verify the mapping (by UPID should be 0 to
be deactivated).

D3h CANopen Error: Invalid Mapping in TXPDO 4 | More than 8 byte data mapped into TPDO 4.
Verify the mapping (by UPID should be 0 to
be deactivated).

D4h CANopen Error: Invalid Mapping in RxPDO 1 | More than 8 byte data mapped into RPDO 1.
Verify the mapping (by UPID should be 0 to
be deactivated).

NTI AG / LinMot® www.LinMot.com Page 55/57

©
=)
c
©
=
()]
(8)
qlg
S
(]
)
=
c
Q
Q
g
(&)

CANopen Interface Manual

Error Code Error Description

Recommended Actions

D5h CANopen Error: Invalid Mapping in RxPDO 2 | More than 8 byte data mapped into RPDO 2.
Verify the mapping (by UPID should be 0 to
be deactivated).
D6h CANopen Error: Invalid Mapping in RxPDO 3 | More than 8 byte data mapped into RPDO 3.
Verify the mapping (by UPID should be 0 to
be deactivated).
D7h CANopen Error: Invalid Mapping in RxPDO 4 | More than 8 byte data mapped into RPDO 4.
Verify the mapping (by UPID should be 0 to
be deactivated).
D8h CANopen Error: Invalid UPID in TxPDO 1 Check the UPID, which is configured by
Mapping “mapping by UPID”.

D9h CANopen Error: Invalid UPID in TxPDO 2 Check the UPID, which is configured by
Mapping “mapping by UPID”.

DAh CANopen Error: Invalid UPID in TxPDO 3 Check the UPID, which is configured by
Mapping “mapping by UPID”.

DBh CANopen Error: Invalid UPID in TxPDO 4 Check the UPID, which is configured by
Mapping “mapping by UPID".

DCh CANopen Error: Invalid UPID in RxPDO 1 Check the UPID, which is configured by
Mapping “mapping by UPID”.

DDh CANopen Error: Invalid UPID in RxPDO 2 Check the UPID, which is configured by
Mapping “mapping by UPID”.

DEh CANopen Error: Invalid UPID in RxPDO 3 Check the UPID, which is configured by
Mapping “mapping by UPID”.

DFh CANopen Error: Invalid UPID in RxPDO 4 Check the UPID, which is configured by
Mapping “mapping by UPID”.

NTI AG / LinMot® www.LinMot.com Page 56/57

E
=)
c
©
=
()]
(8)
“ﬂ_!
S
(]
)
=
c
Q
Q
%
(&)

LinMot®
11 Contact Addresses

SWITZERLAND NTI AG

Haerdlistr. 15 ©
CH-8957 Spreitenbach 2
(O
Sales and Administration: +41-(0)56-419 91 91 =
office@linmot.com 8
“tg
Tech. Support: +41-(0)56-544 71 00 o
support@linmot.com k=
Tech. Support (Skype) : skype:support.linmot q:,
Q
Fax: +41-(0)56-419 91 92 S
Web: http://www.linmot.com/ g

USA LinMot, Inc.

5750 Townline Road
Elkhorn, WI 53121

Sales and Administration: 877-546-3270
262-743-2555

Tech. Support: 877-804-0718
262-743-1284

Fax: 800-463-8708
262-723-6688

E-Mail: us-sales@linmot.com

Web: http://www.linmot-usa.com/

Please visit http://www.linmot.com/ to find the distributor closest to you.

Smart solutions are...

www.LinMot.com

NTI AG / LinMot® www.LinMot.com Page 57/57

http://www.linmot.com/
http://www.linmot-usa.com/
mailto:us-sales@linmot.com
http://www.linmot.com/
skype:support.linmot
mailto:support@linmot.com
mailto:office@linmot.com

	 1 System overview
	 2 Connecting the CAN bus
	 2.1 Pin assignment of the CMD Connector (X7, X8)
	 2.2 CAN Termination
	 2.2.1 Activating the termination resistor

	 3 CANopen Parameters
	 4 CANopen Variables
	 5 Mapping of the PDOs
	 5.1 Default Mapping
	 5.1.1 Default Mapping of the Receive PDOs
	 5.1.2 Default Mapping of the Transmit PDOs
	 5.1.3 Default Identifier

	 5.2 Using the Motion Command Interface in asynchronous transmission modes

	 6 Object Dictionary
	 6.1 Communication Profile Area (1000h - 1FFFh)
	 6.2 Manufacturer specific Profile Area (2000h – 5FFFh)
	 6.2.1 UPID Commands
	 6.2.2 System Commands
	 6.2.3 Curve Service Commands
	 6.2.4 Error Log Commands
	 6.2.5 Command Table Commands

	 7 Examples
	 7.1 Homing and motion commands

	 8 Reset Parameters to default values
	 9 Configuration of the E1200 with an EDS File
	 9.1 Configuring a PDO variable by UPID with the EDS file
	 9.1.1 Setting the UPIDs of the parameter to map to a PDO
	 9.1.2 Getting UPID PDO data into PLC variables
	 9.1.3 Example

	 10 Interface Error Codes
	 11 Contact Addresses

